

i.MX8MN-COMPACT-CM

CPU Module (SoM) with NXP i.MX8M-NANO

Datasheet

rev 1.0

Ronetix has made every attempt to ensure that the information in this document is accurate and complete. However, Ronetix assumes no responsibility for any errors, omissions, or for any consequences resulting from the use of the information included herein or the equipment it accompanies. Ronetix reserves the right to make changes in its products and specifications at any time without notice. Any software described in this document is furnished under a license or non-disclosure agreement. It is against the law to copy this software on magnetic tape, disk, or other medium for any purpose other than the licensee's personal use. Product and company names herein may be the trademarks of their respective owners.

Ronetix Development Tools GmbH Hirschstettner Str. 19/Z110 1220 Vienna Austria <u>www.ronetix.at</u>

1. Document Revision History

Revision	Date	Notes
1.0	20-Jun-2021	Initial release

2. Table of Contents

Table of Contents

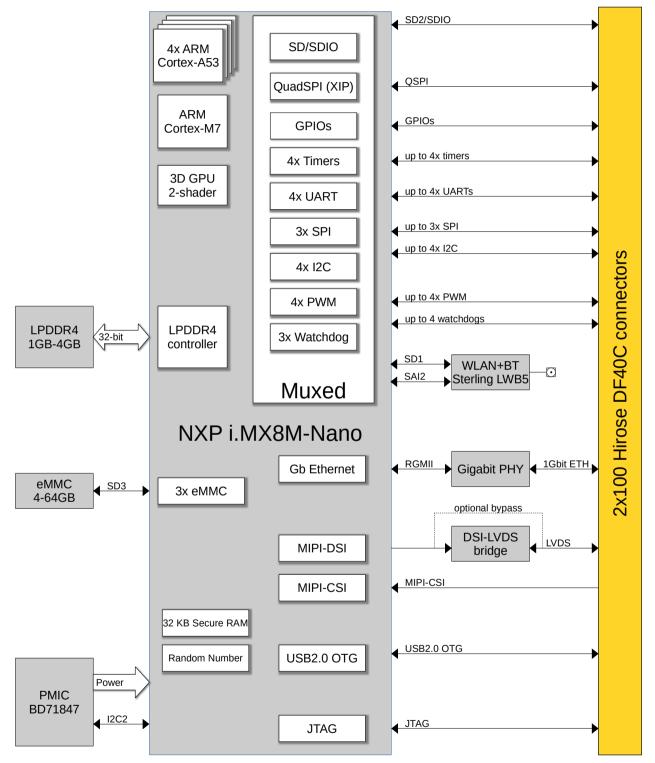
1. Document Revision History	3
2. Table of Contents	3
3. Overview	5
3.1 General Information	5
3.2 Highlights	6
3.3 SoM Block Diagram	7
4. CPU Module Hardware Components	8
4.1 Power supply	
4.2 CPU i.MX8M-NANO	8
4.2.1 CPU Block Diagram	9
4.2.2 CPU Platform	9
4.3 Memory	10
4.3.1 DRAM	10
4.3.2 eMMC – non-volatile storage memory	10
4.4 Gigabit Ethernet	11
4.5 WLAN	11
4.6 LVDS bridge	11
4.7 LED	12
5. Hirose DF40C connectors	12
6. CPU Module interfaces	16
6.1 Display interfaces	16
6.2 MIPI-CSI Camera interface	18
6.3 USB interface	19
6.4 MMC, SD, SDIO	20
6.5 UART	20
6.6 I2C	21

6.7 SPI	22
6.8 Quad SPI	
6.9 PWM	
6.10 GPIO	23
6.11 JTAG	24
7. Power Supply	24
7.1 Power supply from base board	
7.2 Power supply provided to base board	
7.3 System Signals	24
8. Electrical Specifications	
8.1 Absolute maximum ratings	25
8.2 Recommended Operating Conditions	25
9. Operating Temperature Ranges	25
10. Cooling	
11. Mechanical Drawings	25
11.1 Base board mounting	
11.2 Standoffs	
12. Warranty Terms	26

3. Overview

3.1 General Information

The **i.MX8MN-COMPACT-CM** is a high-performance processing for low-power CPU Module (SoM – System On Module) that perfectly fits various embedded products of connected and portable devices. It is based on the NXP i.MX8M-NANO family of multipurpose processors from which feature up to four ARM® CortexTM-A53 up to 2GHz + an additional ARM Cortex-M7. This Heterogeneous Multicore Processing architecture enables the device to run an open operating system like Linux on the Cortex-A53 core and an RTOS like FreeRTOSTM on the Cortex-M4 core for time and security critical tasks.



3.2 Highlights

CPU	 Quad/Duo/Solo Armv8-A, 64-bit CortexTM-A53 Core, 1.5GHz ARM[®] CortexTM-M7, 750MHz
Memory	 RAM: 1 GiB LPDDR4 (optional: up to 4 GiB) eMMC: 4 GiB (optional: up to 64 GiB)
Display	MIPI DSILVDS, up to 1400 x 1050 @60Hz
Camera	• MIPI-CSI, 4 data lanes
Network	 Ethernet: 10/100/1000Mbps WiFi: Sterling LWB5, 802.11ac, dual band (optional) Bluetooth: Bluetooth 4.2 (optional)
I/O	 USB2.0 OTG port Up to 4x UART ports MMC/SD/SDIO Up to 3x SPI Up to 4x I2C Up to 4x general purpose PWM signals GPIOs
Electrical	• Supply Voltage: 3.85 – 5.0V
Physical	 Board size: 40x30mm Operation temperature: 0° +70°C, -20° to 85° C (optional) Relative humidity: 10% to 90%

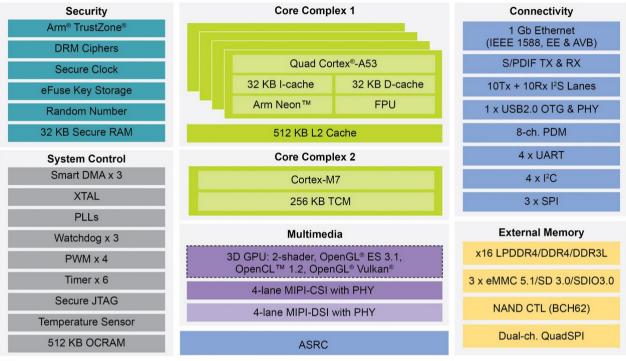
3.3 SoM Block Diagram

4. CPU Module Hardware Components

This chapter describes the hardware components of i.MX8MN-COMPACT-CM SoM.

4.1 Power supply

i.MX8MN-COMPACT-CM uses Rohm's BD71850 as a Power Management Integrated circuit (PMIC) designed specifically for use with NXP's i.MX8M-NANO series of application processors. The PMIC regulates all power rails required on CPU module from a single 3.85V-5.0V power supply.


The PMIC is fully programmable via the I2C interface and associated register map. Additional communication is provided by direct logic interfacing including interrupt, watchdog and reset.

4.2 CPU i.MX8M-NANO

The i.MX 8M-NANO Solo/ Dual / 8M Quad processors represent NXP's latest market of connected streaming audio/video devices, scanning/imaging devices, and various devices requiring high-performance, low-power processors. The i.MX 8M-NANO Solo / Dual / 8M Quad processors feature advanced implementation of up to 4 Arm®Cortex®-A53 cores, which operates at speeds of up to 1.5 GHz. A general purpose Cortex®-M7 core processor is for low-DRAM controller supports 16-bit power processing. The LPDDR4, DDR4, and DDR3Lmemory. There are a number of other interfaces for connecting peripherals, such as WLAN, Bluetooth, GPS, displays, and camera sensors.

4.2.1 CPU Block Diagram

[] Not Available on the i.MX 8M Nano Lite and Nano UltraLite Not Available on the i.MX 8M Nano UltraLite Figure 4.1: CPU Block diagram

4.2.2 CPU Platform

The i.MX8M-NANO processor implements up to four ARM® Cortex®-A53 cores intended for high level O/S, with an ARM® Cortex®-M7 core dedicated for real-time tasks.

The ARM Cortex-A53 MPCore[™] platform has the following features:

- Quad ARM Cortex-A53 Cores
- Target frequency of 1.5GHz
- The core configuration is symmetric, where each core includes:
 - 32 KByte L1 Instruction Cache
 - 32 KByte L1 Data Cache
 - MPE (media processing engine) with NEON co-processor supporting SIMD architecture

- The Arm Cortex-A53 Core complex shares:
 - General interrupt controller (GIC) with 128 interrupt support
 - Global timer
 - Snoop control unit (SCU)
 - 1 MB unified I/D L2 cache
 - NEON MPE co-processor
 - SIMD Media Processing Architecture
 - NEON register file with 32x64-bit general-purpose registers
 - NEON Integer execute pipeline (ALU, Shift, MAC)
 - NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
 - NEON load/store and permute pipeline

The ARM Cortex-M7 platform includes the following features:

- Cortex-M7 CPU core operating at 750 MHz
- MPU (memory protection unit)
- FPU (floating-point unit)
- 32 KByte instruction cache
- 32 KByte data cache
- 256 KByte TCM (tightly-coupled memory)

4.3 Memory

4.3.1 DRAM

i.MX8MN-COMPACT-CM is standard equipped with 1 GB LPDDR4 memory. Optionally up to 4 GB can be assembled. The data bus is 16-bit wide.

4.3.2 eMMC – non-volatile storage memory

i.MX8MN-COMPACT-CM is standard equipped with 4 GB eMMC. Optionally up to 32 GB can be assembled.

The eMMC can be used as boot device.

4.4 Gigabit Ethernet

i.MX8MN-COMPACT-CM implements one full-featured 10/100/1000 Ethernet ports implemented with MAC built into the i.MX8M-NANO SoC, coupled with AR8031 RGMII Ethernet PHYs from Qualcomm. The Ethernet interface support the following main features:

- 10/100/1000 BASE-T IEEE 802.3 compliant.
- IEEE 802.3u compliant Auto-Negotiation.
- Supports all IEEE 1588 frames inside the MAC.
- Automatic channel swap (ACS).
- Automatic MDI/MDIX crossover.
- Automatic polarity correction.
- Activity and speed indicator LED controls.

4.5 WLAN

i.MX8MN-COMPACT-CM optional wireless communication is implemented with Laird Sterling LWB5 WLAN module. Sterling-LWB5 is an 802.11ac/b/g/n Dual-Band Wi-Fi+Bluetooth module based on Cypress's BCM43353 chipset. It is Dual-Band AC on 2.4GHz + 5GHz and incorporates Bluetooth 4.2. The download speed are 300Mbps on N networks and 867Mbps on AC network.

i.MX8MN-COMPACT-CM is equipped with a U.FL high frequency connector for external antenna.

4.6 LVDS bridge

i.MX8MN-COMPACT-CM implements (optional) onboard LVDS display interface by converting the MIPI-DSI to LVDS signals using Texas Instruments SN65DSI83 transceiver. The SN65DSI83 to FlatLink bridge device features a single-channel MIPI D-PHY receiver front-end DSI configuration with four lanes per channel operating at 1 Gbps per lane; a maximum input bandwidth of 4 Gbps. The bridge decodes MIPI DSI18 bpp RGB666 and 24 bpp RGB888 packets and converts the formatted video data stream to a FlatLink compatible LVDS output operating at pixel clocks operating from 25 MHz to 154 MHz, offering a Single-Link LVDS with four data lanes per link. The SN65DSI83 device can support up to WUXGA1920 × 1200 at 60 frames per second, at 24 bpp with reduced blanking. The SN65DSI83 device is also suitable for applications using 60 fps 1366 × 768 /1280 × 800 at 18 bpp and 24 bpp. Partial line buffering is implemented to accommodate the data stream mismatch between the DSI and LVDS interfaces. Designed with industry-compliant interface technology, the SN65DSI83 device is compatible with a wide range of microprocessors, and is designed with a range of

power management features including low-swing LVDS outputs, and the MIPI defined ultra-low power state (ULPS) support.

Main features:

- LVDS Output Clock Range of 25 MHz to 154MHz.
- Suitable for up to 60 fps WUXGA 1920 x 1080 at 18 bpp and 24 bpp Color with Reduced Blanking
- ESD Rating ±2 kV

4.7 LED

The i.MX8MN-COMPACT-CM features a red LED controlled by GPIO4_IO27 signal of the i.MX8M-NANO. The LED is ON when GPIO4_IO27 is logic High.

5. Hirose DF40C connectors

The i.MX8MN-COMPACT-CM exposes two 100 pin Hirose connectors DF40C-100DP-0.4V(51).

Recommended mating connector for custom board interfacing with stacking height 1.5mm is DF40C-100DS-0.4V(51). With an appropriated mated connector stacking heights from 1.5mm up to 4mm are possible.

J1	Signal	i.MX8MN Ball	Default	Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
1	GPI02_I007	U26	gpio2.IO[7]	usdhc1.DATA5					gpio2.IO[7]
3	JTAG TDI	E27							
5	JTAG_TDO	E26							
7	JTAG TCK	F26							
9	JTAG TMS	F27							
11	JTAG TRST B	C27							
13	BOOT_MODE1	G27							
15	BOOT MODE0	G26							
17	GND								
19	SD2 nRST	AB26	gpio2.IO[19]	usdhc2.RESET B					gpio2.IO[19]
21	SD2 nCD	AA26	gpio2.IO[12]	usdhc2.CD B					gpio2.IO[12]
23	SD2 WP	AA27	gpio2.IO[20]	usdhc2.WP					gpio2.IO[20]
25	SD2_DATA2	V24	gpio2.IO[17]	usdhc2.DATA2					gpio2.IO[17]
27	SD2 DATA3	V23	gpio2.IO[18]	usdhc2.DATA3					gpio2.IO[18]
29	SD2 CLK	W23	gpio2.IO[13]	usdhc2.CLK					gpio2.IO[13]
31	SD2_CER	W24	gpio2.IO[13]	usdhc2.CMD					gpio2.IO[14]
33	SD2 DATA1	AB24	gpio2.IO[14]	usdhc2.DATA1					gpio2.IO[14]
35	SD2 DATA0	AB24 AB23	gpio2.IO[15]	usdhc2.DATA1					gpio2.IO[15]
37	GPI02_I011	R24	gpio2.IO[13]	usdhc1.STROBE					gpio2.IO[11]
39	GPI04_I022	AB22	gpio2.10[11] gpio4.10[22]	sai2.RX_BCLK	sai5.TX BCLK			uart1.RX	gpio4.IO[22]
41	SAI5 RXFS	AB15		sai5.RX SYNC	sai1.TX_DATA[0]			uditt.KA	
41 43			gpio3.IO[19]					adm DIT_CTDE AM(0)	gpio3.IO[19]
	SAI5_RXD0	AD18	gpio3.IO[21]	sai5.RX_DATA[0]	sai1.TX_DATA[2]			pdm.BIT_STREAM[0]	gpio3.IO[21]
45 47	SAI5_MCLK	AD15	gpio3.IO[25]	sai5.MCLK	sai1.TX_BCLK				gpio3.IO[25]
	SAI5_RXC	AC15	gpio4.IO[1]	sai1.RX_BCLK	sai5.RX_BCLK			coresight.TRACE_CTL	gpio4.IO[1]
49	SAI5_RXD1	AC14	gpio4.IO[3]	sai1.RX_DATA[1]	sai5.RX_DATA[1]		pdm.BIT_STREAM[1]	coresight.TRACE[1]	gpio4.IO[3]
51	SAI5_RXD3	AC13	gpio4.IO[5]	sai1.RX_DATA[3]	sai5.RX_DATA[3]		pdm.BIT_STREAM[3]	coresight.TRACE[3]	gpio4.IO[5]
53	SAI5_RXD2	AD13	gpio4.IO[4]	sai1.RX_DATA[2]	sai5.RX_DATA[2]		pdm.BIT_STREAM[2]	coresight.TRACE[2]	gpio4.IO[4]
55	REF_CLK_32K	AG14	gpio1.IO[0]	gpio1.IO[0]	ccmsrcgpcmix.ENET_PHY_	REF_CLK_ROOT			anamix.REF_CLK_32K
57	GPIO1_IO01	AF14	gpio1.IO[1]	gpio1.IO[1]	pwm1.OUT				anamix.REF_CLK_24M
59	GPIO1_IO06	AG11	gpio1.IO[6]	gpio1.IO[6]	enet1.MDC				usdhc1.CD_B
61	GPI01_I007	AF11	gpio1.IO[7]	gpio1.IO[7]	enet1.MDIO				usdhc1.WP
63	GND								
65	GPI01_I008	AG10	gpio1.IO[8]	gpio1.IO[8]	enet1.1588_EVENT0_IN				usdhc2.RESET_B
67	GPIO4_IO21	AC19	gpio4.IO[21]	sai2.RX_SYNC	sai5.TX_SYNC	sai5.TX_DATA[1]	sai2.RX_DATA[1]	uart1.TX	gpio4.IO[21]
69	ENET_LED_LINK100								
71	ENET_LED_LINK1000								
73	ENET_LED_ACT								
75	QSPIA_DATA2	K23	gpio3.IO[8]	rawnand.DATA02	qspi.A_DATA[2]	usdhc3.CD_B			gpio3.IO[8]
77	QSPIA_DATA1	K24	gpio3.IO[7]	rawnand.DATA01	qspi.A_DATA[1]				gpio3.IO[7]
79	QSPIA_nSS0	N24	gpio3.IO[1]	rawnand.CE0_B	qspi.A_SS0_B				gpio3.IO[1]
81	QSPIA_DATA3	N23	gpio3.IO[9]	rawnand.DATA03	qspi.A_DATA[3]	usdhc3.WP			gpio3.IO[9]
83	QSPIA_SCLK	N22	gpio3.IO[0]	rawnand.ALE	qspi.A_SCLK				gpio3.IO[0]
85	QSPIA_DATA0	P23	gpio3.IO[6]	rawnand.DATA00	qspi.A_DATA[0]				gpio3.IO[6]
87	SPDIF_RX	AG9	gpio5.IO[4]	spdif1.IN	pwm2.OUT				gpio5.IO[4]
89	SPDIF_TX	AF9	gpio5.IO[3]	spdif1.OUT	pwm3.OUT				gpio5.IO[3]
91	SPDIF_EXT_CLK	AF8	gpio5.IO[5]	spdif1.EXT_CLK	pwm1.OUT				gpio5.IO[5]
93	GPI01_I012	AB10	gpio1.IO[12]	gpio1.IO[12]	usb1.OTG_PWR				sdma2.EXT_EVENT[1]
95	GPI01_I014	AC9	gpio1.IO[14]	gpio1.IO[14]	usb2.OTG_PWR			usdhc3.CD_B	pwm3.OUT
97	GPI01_I013	AD9	gpio1.IO[13]	gpio1.IO[13]	usb1.OTG_OC				pwm2.OUT
99	GPIO1 IO15	AB9	gpio1.IO[15]	gpio1.IO[15]	usb2.OTG OC			usdhc3.WP	pwm4.OUT

Figure 5.1: J1 odd pins

2	ENET_TX1_P								
4	ENET_TX1_N								
6	ENET RX1 P		-					-	-
8	ENET_RX1_N								
10	ENET_TX2_P		-	-					
12	ENET_TX2_N								
12	ENET_RX2_P								
14	ENET_RX2_N								
18	GND								
20	not connected								
20			-					-	
	not connected								
24	not connected								
26	not connected								
28	not connected								
30	not connected								
32	not connected								
34	not connected								
36	not connected			_					
38	not connected								
40	not connected								
42	not connected								
44	not connected								
46	not connected								
48	not connected								
50	not connected								
52	not connected								
54	not connected								
56	not connected								
58	not connected								
60	not connected								
62	GND								
64	GPI01 1005	AF12	gpio1.IO[5]	gpio1.IO[5]	m4.NMI				ccmsrcgpcmix.PMIC_REAI
66	GPI01_I009	AF10	gpio1.IO[9]	gpio1.IO[9]	enet1.1588_EVENT0_OUT			usdhc3.RESET_B	sdma2.EXT_EVENT[0]
68	UART1 RXD	E14	gpio5.IO[22]	uart1.RX	ecspi3.SCLK				gpio5.IO[22]
70	UART1 TXD	F13	gpio5.IO[23]	uart1.TX	ecspi3.MOSI				gpio5.IO[23]
72	UART2_RXD	F15	gpio5.IO[24]	uart2.RX	ecspi3.MISO				gpio5.IO[24]
74	UART2_TXD	E15	gpio5.IO[25]	uart2.TX	ecspi3.SS0				gpio5.IO[25]
76	UART1_CTS	E18	gpio5.IO[26]	uart3.RX	uart1.CTS_B	usdhc3.RESET_B			gpio5.IO[26]
78	UART1 RTS	D18	gpio5.IO[27]	uart3.TX	uart1.RTS B	usdhc3.VSELECT			gpio5.IO[27]
80	UART4_RXD	F19	gpio5.IO[28]	uart4.RX	uart2.CTS_B	pcie1.CLKREQ_B			gpio5.IO[28]
82	UART4_TXD	F18	gpio5.IO[29]	uart4.TX	uart2.RTS_B				gpio5.IO[29]
84	12C4_SDA	D13	gpio5.IO[21]	i2c4.SDA	pwm1.OUT				gpio5.IO[21]
86	12C4_SCL	E13	gpio5.IO[21]	i2c4.SCL	pwm1.001 pwm2.OUT	pcie1.CLKREQ B			gpio5.IO[20]
88	GND	L10	gpi05.i0[20]	1204.00L	p	point OFINEQ_B			99:00.00[20]
90	SAI3_RXFS	AG8	gpio4.IO[28]	sai3.RX_SYNC	gpt1.CAPTURE1	sai5.RX_SYNC	sai3.RX_DATA[1]		gpio4.IO[28]
90	SAI3_RXD	AG8 AF7	gpio4.IO[28]	sai3.RX_DATA[0]	gpt1.COMPARE1	sai5.RX_DATA[0]		uart2.RTS_B	gpio4.IO[30]
92	SAI3_TXC	AG6		sai3.TX_BCLK	gpt1.COMPARE2				
		AG6 AF6	gpio5.IO[0] gpio5.IO[1]	sai3.TX_DATA[0]	gpt1.COMPARE3	sai5.RX_DATA[2] sai5.RX_DATA[3]		uart2.TX	gpio5.IO[0]
									gpio5.IO[1]
96 98	SAI3_TXD SAI3_MCLK	AD6	gpio5.IO[2]	sai3.MCLK	pwm4.OUT	sai5.MCLK			gpio5.IO[2]

Figure 5.2: J1 even pins

SODIMM Pin	Signal	i.MX8MN Ball		Alt-0	Alt-1	Alt-2	Alt-3	Alt-4	Alt-5
1	not connected								
3	not connected								
5	USB1_ID	D22							
7	USB1_VBUS	F22							
9	GND								
11	LVDS CLK N	B11	DSI CLK P	-					
13	LVDS_CLK_P	A11	DSI_CLK_N						
15	GND	/111	bol_orit_it	-					
17	LVDS TX3 N	B13	DSI D3 P						
19	LVDS_TX3_P	A13	DSI_D3_N	-					
21	GND	A13	031_03_1						
21	LVDS_TX2_N	B12	DSI_D2_P	-					
25	LVDS_TX2_N	A12	DSI_D2_P DSI_D2_N	-					
25	GND	AIZ	DSI_DZ_N	-					
		B 40	DOL D1 D						
29	LVDS_TX1_N	B10	DSI_D1_P						
31	LVDS_TX1_P	A10	DSI_D1_N	-					
33	GND			_					
35	LVDS_TX0_N	B9	DSI_D0_P						
37	LVDS_TX0_P	A9	DSI_D0_N	-					
39	GND								
41	MX8_ONOFF	A25							
43	I2C1_SCL	E9	gpio5.IO[14]	i2c1.SCL	enet1.MDC				gpio5.IO[14]
45	I2C1_SDA	F9	gpio5.IO[15]	i2c1.SDA	enet1.MDIO				gpio5.IO[15]
47	POR_B	B24							
49	I2C3_SCL	E10	gpio5.IO[18]	i2c3.SCL	pwm4.OUT	gpt2.CLK			gpio5.IO[18]
51	I2C3_SDA	D9	gpio5.IO[19]	i2c3.SDA	pwm3.OUT	gpt3.CLK			gpio5.IO[19]
53	ECSPI2_MISO	A8	gpio5.IO[12]	ecspi2.MISO	uart4.CTS_B				gpio5.IO[12]
55	ECSPI2_MOSI	B8	gpio5.IO[11]	ecspi2.MOSI	uart4.TX				gpio5.IO[11]
57	ECSPI1_MISO	A7	gpio5.IO[8]	ecspi1.MISO	uart3.CTS_B				gpio5.IO[8]
59	ECSPI1_MOSI	B7	gpio5.IO[7]	ecspi1.MOSI	uart3.TX				gpio5.IO[7]
61	ECSPI1_SS0	B6	gpio5.IO[9]	ecspi1.SS0	uart3.RTS_B				gpio5.IO[9]
63	ECSPI2_SS0	A6	gpio5.IO[13]	ecspi2.SS0	uart4.RTS_B				gpio5.IO[13]
65	VDD_1V8								
67	VDD 1V8								
69	VDD 1V8								
71	VDD_3V3								
73	VDD_3V3								
75	VDD 3V3								
77	VSYS								
79	VSYS								
81	VSYS								
83	VSYS								
85	VSYS								
87	VSYS								
89	GND								
91	GND								
91	GND								
93	GND								
95	GND								
97	GND								

Figure 5.3: J2 odd pins

							1
2	not connected						
4	not connected						
6	USB1_D_P	B22					
8	USB1_D_N	A22					
10	GND						
12	not connected						
14	not connected						
16	GND						
18	not connected						
20	not connected						
22	GND						
24	not connected						
26	not connected						
28	GND						
30	CSI_D3_P	B18					
30	CSI_D3_N	A18					
32	GND	AIO					
34	CSI D2 P	B17					
36	CSI_D2_P CSI_D2_N	A17					
40		AIT					
	GND						
42	CSI_CLK_P	B16					
44	CSI_CLK_N	A16					
46	GND					 	
48	CSI_D1_P	B15					
50	CSI_D1_N	A15					
52	GND						
54	CSI_D0_P	B14					
56	CSI_D0_N	A14					
58	GND						
60	SYS_nRST						
62	ECSPI1_SCLK	D6	gpio5.IO[6]	ecspi1.SCLK	uart3.RX		gpio5.IO[6]
64	ECSPI2_SCLK	E6	gpio5.IO[10]	ecspi2.SCLK	uart4.RX		gpio5.IO[10]
66	VDD_1V8						
68	VDD_1V8						
70	VDD_1V8						
72	VDD_3V3						
74	VDD_3V3						
76	VDD_3V3						
78	VSYS						
80	VSYS						
82	VSYS						
84	VSYS						
86	VSYS						
88	VSYS						
90	GND						
92	GND						
94	GND						
96	GND						
90	GND						
100	GND						
100	UND						

Figure 5.4: J2 even pins

6. CPU Module interfaces

6.1 Display interfaces

i.MX8MN-COMPACT-CM provides the following display interfaces:

• MIPI DSI

The MIPI-DSI interface is based on the four-lane MIPI display interface available with the iMX8M-NANO SoC. The DSI signals are available on the HIROSE DF40C connector if the SN65DSI83 is not assembled.

The following main features are supported:

• Up to 4 data lanes support D-PHY

- Implements all three DSI Layers (Pixel to Byte packing, Low Level Protocol, Lane Management)
- Maximum resolution ranges up to FHD (1920 x 1080 @ 60 Hz)
- Supports High Speed and Low Power operation
- MIPI Alliance Specification for Display Serial Interface Version 1.1 compliant

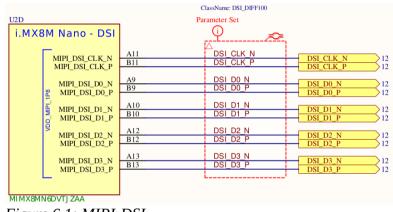


Figure 6.1: MIPI-DSI

- LVDS Interface (optional) using Texas Instruments SN65DSI83 MIPI-DSI to LVDS bridge. If not assembled, then all DSI signals are available on the HIROSE DF40C connector. Texas Instruments SN65DSI83 supports following main features:
 - LVDS Output Clock Range of 25 MHz to 154MHz.
 - Suitable for up to 60 fps WUXGA 1920 x 1080 at 18 bpp and 24 bpp Color with Reduced Blanking
 - Capable of supporting the full resolution of the iMX8M MIPI-DSI interface with reduced blanking
 - ESD Rating ±2 kV

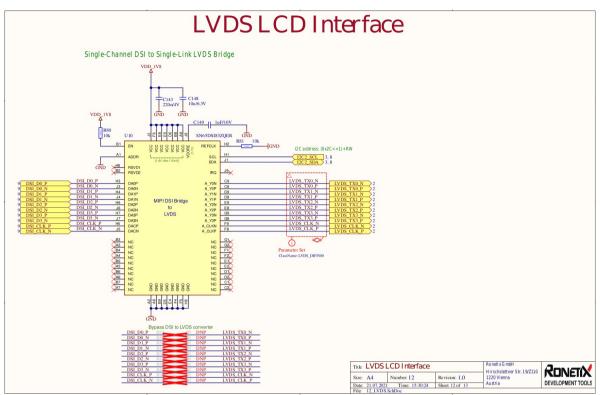


Figure 6.2: LVDS Interface

6.2 MIPI-CSI Camera interface

i.MX8MN-COMPACT-CM MIPI-CSI interface is derived from the four-lane MIPI-CSI host controller (MIPI_CSI) integrated into the iMX8M-NANO SoC. The CSI1 host controller is a digital core that implements all protocol functions defined in the MIPI CSI-1 specification, providing an interface between i.MX8MN-COMPACT-CM and a MIPI CSI-1 compliant camera sensor. The following main features are supported:

- Up-to four data lanes and one clock lane.
- Maximum bit rate of 1.5 Gbps.
- Compliant with MIPI D-PHY standard specification V1.1 and Samsung D-PHY.
- Supports unidirectional Master operation
- Supports high speed mode (80Mbps 1.5Gbps) per lane, providing 4K@30fps capability for the 4 lanes
- Support 5M pixel at 15 fps, 1080p30, 720p60, VGA at 60 fps
- Support for all CSI-2 data types:

- RGB444, RGB555, RGB565, RGB666, RGB888
- Legacy YUV420 8 bit
- RAW6, RAW7, RAW8, RAW10, RAW12, RAW14
- User Defined Data Types

		ClassName: CSI_DIFF100	
U2E		Parameter Set	
i.MX8M Nano - CSI			
MIPI_CSI_CLK_N	A16	CSI_CLK_N	CSI_CLK_N 2
MIPI_CSI_CLK_P	B16	CSI_CLK_P	CSI_CLK_P 2
MIPI_CSI_D0_N	A14	CSI_D0_N	CSI_D0_N 2
	B14	CSI_D0_P	CSI_D0_P 2
MIPI_CSI_D1_N	A15	CSI_D1_N	CSI_D1_N 2
MIPI_CSI_D1_P	B15	CSI_D1_P	CSI_D1_P 2
MIPI_CSI_D2_N	A17	CSI_D2_N	CSI_D2_N 2
MIPI_CSI_D2_P	B17	CSI_D2_P	CSI_D2_P 2
MIPI_CSI_D3_N	A18	CSI_D3_N	CSI_D3_N 2
MIPI_CSI_D3_P	B18	CSI_D3_P	CSI_D3_P 2
MIMX8MN6DVTJ ZAA		L'	
	007		

Figure 6.3: MIPI-CSI

6.3 USB interface

The i.MX8M-NANO SoC is equipped with one USB OTG controller and PHY. The USB instance contains a USB 2.0 core, which supports dual-role functionality. USB2 is not available on the SoC. The USB port supports the following main features:

- High-Speed/Full-Speed/Low-Speed OTG core
- Hardware support for OTG signaling, Session Request Protocol (SRP), Host Negotiation Protocol (HNP), and Attach Detection Protocol (ADP). ADP support includes dedicated timer hardware and register interface
- up to 8 endpoints
- supports charger detection with register interface only
- Low-power mode with local and remote wake-up capability

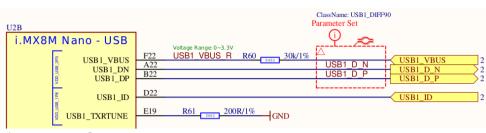


Figure 6.4: USB

6.4 MMC, SD, SDIO

The i.MX8M-NANO SoC is equipped with three MMC/SD/SDIO controller IPs (uSDHC). On i.MX8MN-COMPACT-CM SD3 is connected to the eMMC, SD1 is connected to the WiFi module, SD2 is available on the Hirose DF40C connector.

The uSDHC supports the following main features:

- Fully compliant with MMC command/response sets and physical layer as defined in the multimedia card system specification, v5.0/v4.4/v4.4/v4.3/v4.2.
- Fully compliant with SD command/response sets and physical layer as defined in the SD memory card specifications, v3.0 including high-capacity SDXC cards up to 2 TB.
- 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR104 mode (104 MB/s max).
- Dedicated "card detection" and "write protection" signals
- Both 1.8V and 3.3V signaling support (uSDHC port 1 with 1-bit and 4-bit operation modes only).

6.5 UART

The i.MX8MN-COMPACT-CM exposes up to 4 UART interfaces some of which are multiplexed with other peripherals.

The i.MX8M-NANO UARTv2 supports the following features:

- High-speed TIA/EIA-232-F compatible
- 9-bit or Multidrop mode (RS-485) support
- 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even, odd or none).
- Programmable baud rates up to 4 Mbps.

- 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting auto-baud.
- Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s).
- Hardware flow control support for request to send and clear to send signals.
- RS-485 driver direction control.
- DCE/DTE capability.
- RX_DATA input and TX_DATA output can be inverted respectively in RS-232/RS-485 mode.
- Various asynchronous wake mechanisms with capability to wake the processor from STOP mode through an on-chip interrupt.

6.6 I2C

The i.MX8M-NANO SoC is equipped with four I2C bus interfaces. I2C1, I2C3 and I2C4 are available on the Hirose DF40C connector. I2C2 is used internally, not available on Hirose DF40C. The following general features are supported by all I2C bus interfaces:

- Compliant with Philips I2C specification version 2.1
- Supports standard mode (up to 100K bits/s) and fast mode (up to 400K bits/s)
- Multimaster operation
- Master or Slave operation mode.

I2C usage table:

2C USAGE AND ADDRESS TABLE					
NAME	PERIPHERAL	ADDRESS			
	i.MX8MM-COMPACT-MB: Camera on CSI1	(0x3C <<1)+RW			
1201	i.MX8MM-COMPACT-MB:RTC clock, 3.3V*	(0x50<<1)+RW			
12C1 1.8V	i.MX8MM-COMPACT-MB: Audio Codec, 3.3V*	(0x34<<1)+RW			
1.01	i.MX8MM-COMPACT-MB: miniPCIEe Ref. Clock	(0x6A <<1)+RW			
12C2	i.MX8Mx-COMPACT-CM: PMIC control	(0x4B<<1)+RW			
1.8V	i.MX8Mx-COMPACT-CM:LVDS	(0x2C<<1)+RW			
only on CM					
12C 3	i.MX8MM-COMPACT-MB: PCIeM.2				
1.8V					

Note: 3.3V* - through voltage translator

Figure 6.5: I2C address usage

6.7 SPI

Up-to three SPI interfaces are accessible through the i.MX8MN-COMPACT-CM base board interface. The SPI interfaces are derived from i.MX8M-NANO integrated synchronous serial interface (eCSPI). Each instance of eCSPI port can operate as either a master or as an SPI slave. The following features are supported:

- Data rate up to 52 Mbit/s.
- Full-duplex synchronous serial interface.
- Master/Slave configurable.
- Up-to four chip select signals to support multiple peripherals.
- Transfer continuation function allows unlimited length data transfers.
- 32-bit wide by 64-entry FIFO for both transmit and receive data.
- Polarity and phase of the Chip Select (SS) and SPI Clock (SCLK) are configurable.
- Direct Memory Access (DMA) support.

6.8 Quad SPI

QSPI-A signals are available on Hirose DF40C connector.

The following features are supported by the QSPI controller:

- Flexible sequence engine to support various flash vendor devices.
- Single pad, dual pad or quad pad mode of operation.
- Single data rate/double data rate mode of operation.
- DMA support.
- Memory mapped read access to connected flash devices.
- Multi-master access with priority and flexible and configurable buffer for each master.

6.9 PWM

Up to four PWM output signals are available at the i.MX8MN-COMPACT-CM base board interface. The following key features are supported:

- 16-bit up-counter with clock source selection
- 4 x 16 FIFO to minimize interrupt overhead
- 12-bit prescaler for division of clock
- Sound and melody generation
- Active high or active low configured output
- Interrupts at compare and rollover

6.10 GPIO

Up-to 68 of the i.MX8M-NANO general purpose input/output (GPIO) signals are available on the Hirose DF40C connector. When configured as an output, it is possible to write to an i.MX8M-NANO register to control the state driven on the output pin. When configured as an input, it is possible to detect the state of the input by reading the state of an i.MX8M-NANO register. In addition GPIOs peripheral can produce interrupts.

6.11 JTAG

The System JTAG Controller (SJC) provides debug and test control with maximum security. The test access port (TAP) is designed to support features compatible with the IEEE standard 1149.1 v2001 (JTAG). Support IEEE P1149.6 extensions to the JTAG standard are for AC testing of selected IO signals. The JTAG signals are available on the Hirose DF40C connector.

7. Power Supply

7.1 Power supply from base board

i.MX8MN-COMPACT-CM is powered by regulated DC supply 3.85-5.0V

Signal	Туре	Description
VIN_4V2	Power input	Main Power Supply 3.85-5.0V
GND	Power input	Common ground

7.2 Power supply provided to base board

i.MX8MN-COMPACT-CM provides 1.8V and 3.3V power supplies to the Hirose DF40C connector.

Signal	Туре	Description
VDD_1V8	Power output	1.8V, Max. 0.5A
VDD_3V3	Power output	3.3V, Max. 1.5A

7.3 System Signals

Signal	Туре	Description
MX8_ONOFF	Input with Pull-Up resistor	ON/OFF button input (De-bouncing provided at this input). Short connection to GND in OFF mode causes internal power management state machine to change state to ON. In ON mode short connection to GND generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND causes "forced" OFF.
SYS_nRST	Input	PMIC Power On signal

8. Electrical Specifications

8.1 Absolute maximum ratings

Parameter	MIn	Max	Unit
VIN_4V2 – Main Power Supply	-0.3	5.25	V
USB_VBUS - USB_HOST_VBUS, USB_OTG_VBUS -0.3		5.25	V

8.2 Recommended Operating Conditions

Parameter	MIn	Тур	Max	Unit
VIN_4V2 – Main Power Supply	3.8	4.2	5.0	V
VIN_4V2 – recommended source capability		4.0		А

9. Operating Temperature Ranges

Range	Temp.
Commercial	0° to +70°C
Industrial	-40° to +85°C

10. Cooling

A cooling solution should be provided to ensure that under worst-case conditions the temperature on any spot of the heat-spreader surface is maintained according to the iMX8MN-COMPACT-CM temperature specifications.

11. Mechanical Drawings

All dimensions are in millimeters.

The height of all parts is < 2mm.

The base board connector provides 1.5mm board to board clearance.

Board thickness is 1.0mm

11.1 Base board mounting

i.MX8MN-COMPACT-CM SoM has two mounting quarter-holes for mounting to the base board which are plated and connected to GND.

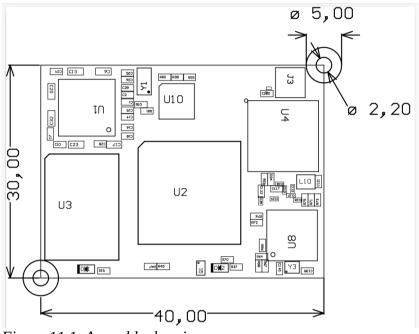


Figure 11.1: Assembly drawing

11.2 Standoffs

Fix i.MX8MN-COMACT-CM to the base board by mounting two spacers with suitable screws. The spacers should be:

• M2x0.4, length 1.5mm

12. Warranty Terms

Ronetix guarantees hardware products against defects in workmanship and material for a period of one (1) year from the date of shipment. Your sole remedy and Ronetix's sole liability shall be for Ronetix, at its sole discretion, to either repair or replace the defective hardware product at no charge or to refund the purchase price. Shipment costs in both directions are the responsibility of the customer. This warranty is void if the hardware product has been altered or damaged by accident, misuse or abuse.

Disclaimer of Warranty

THIS WARRANTY IS MADE IN LIEU OF ANY OTHER WARRANTY, WHETHER EXPRESSED, OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A SPECIFIC PURPOSE, NON-INFRINGEMENT OR THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION, EXCEPT THE WARRANTY EXPRESSLY STATED HEREIN. THE REMEDIES SET FORTH HEREIN SHALL BE THE SOLE AND EXCLUSIVE REMEDIES OF ANY PURCHASER WITH RESPECT TO ANY DEFECTIVE PRODUCT.

Limitation on Liability

UNDER NO CIRCUMSTANCES SHALL RONETIX BE LIABLE FOR ANY LOSS, DAMAGE OR EXPENSE SUFFERED OR INCURRED WITH RESPECT TO ANY DEFECTIVE PRODUCT. IN NO EVENT SHALL RONETIX BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES THAT YOU MAY SUFFER DIRECTLY OR INDIRECTLY FROM USE OF ANY PRODUCT. BY ORDERING THE CPU MODULE, THE CUSTOMER APPROVES THAT THE RONETIX CPU MODULE, HARDWARE AND SOFTWARE, WAS THOROUGHLY TESTED AND HAS MET THE CUSTOMER'S REQUIREMENTS AND SPECIFICATIONS.